Predictive Control of Opto-Electronic Reconfigurable Interconnection Networks Using Neural Networks

نویسندگان

  • M. F. Sakr
  • S. P. Levitan
  • C. L. Giles
  • B. G. Horne
  • M. Maggini
  • D. M. Chiarulli
چکیده

Opto-electronic reconfigurable interconnection networks are limited by significant control latency when used in large multiprocessor systems. This latency is the time required to analyze the current traffic and reconfigure the network to establish the required paths. The goal of latency hiding is to minimize the effect of this control overhead. In this paper, we introduce a technique that performs latency hiding by learning the patterns of communication traffic and using that information to anticipate the need for communication paths. Hence, the network provides the required communication paths before a request for a path is made. In this study, the communication patterns (memory accesses) of a parallel program are used as input to a time delay neural network (TDNN) to perform on-line training and prediction. These predicted communication patterns are used by the interconnection network controller that provides routes for the memory requests. Based on our experiments, the neural network was able to learn highly repetitive communication patterns, and was thus able to predict the allocation of communication paths, resulting in a reduction of communication latency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks

Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...

متن کامل

Performance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks

Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...

متن کامل

Selective optical broadcasting in reconfigurable multiprocessor interconnects

Nowadays, multiprocessor systems are reaching their limits due to the large interconnection bottleneck between chips, but recent advances in the development of optical interconnect technologies can allow the use of low cost, scalable and reconfigurable networks to resolve the problem. In this paper, we make an initial evaluation of the performance gain on general network reconfigurability. In a...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Performance of large-scale reconfigurable optical interconnection networks in DSM systems

We present how a custom reconfigurable optical network can be incorporated into Distributed Shared-memory (DSM) multiprocessor machines, and show the potential speed improvement of the interprocessor communication, even when the limits associated to opto-electronics are included. We find that for 32 processors connected in a torus topology, slowly reconfiguring interconnects can provide up to 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995